Solveeit Logo

Question

Question: The equation of the circle passing through the point (2, 1) and touching y-axis at the origin is....

The equation of the circle passing through the point (2, 1) and touching y-axis at the origin is.

A

x2+y25x=0x ^ { 2 } + y ^ { 2 } - 5 x = 0

B

2x2+2y25x=02 x ^ { 2 } + 2 y ^ { 2 } - 5 x = 0

C

x2+y2+5x=0x ^ { 2 } + y ^ { 2 } + 5 x = 0

D

None of these

Answer

2x2+2y25x=02 x ^ { 2 } + 2 y ^ { 2 } - 5 x = 0

Explanation

Solution

We have the equation of circle

x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0

But it passes through (0, 0) and (2, 1), then

c=0c = 0 ….(i)

5+4g+2f=05 + 4 g + 2 f = 0 ….(ii)

Also g2+f2c=g\sqrt { g ^ { 2 } + f ^ { 2 } - c } = | g |f=0f = 0 {c=0}\{ \because c = 0 \}

From (ii), g=54g = - \frac { 5 } { 4 }

Hence the equation will be 2x2+2y25x=02 x ^ { 2 } + 2 y ^ { 2 } - 5 x = 0 .