Solveeit Logo

Question

Question: The equation of the circle passing through the point \(( - 1 , - 3 )\) and touching the line \(4 x +...

The equation of the circle passing through the point (1,3)( - 1 , - 3 ) and touching the line 4x+3y12=04 x + 3 y - 12 = 0 at the point (3, 0), is.

A

x2+y22x+3y3=0x ^ { 2 } + y ^ { 2 } - 2 x + 3 y - 3 = 0

B

x2+y2+2x3y5=0x ^ { 2 } + y ^ { 2 } + 2 x - 3 y - 5 = 0

C

2x2+2y22x+5y8=02 x ^ { 2 } + 2 y ^ { 2 } - 2 x + 5 y - 8 = 0

D

None of these

Answer

x2+y22x+3y3=0x ^ { 2 } + y ^ { 2 } - 2 x + 3 y - 3 = 0

Explanation

Solution

Let the equation be

x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0 ….(i)

But it passes through (1,3)( - 1 , - 3 ) and (3, 0) therefore

102g6f+c=010 - 2 g - 6 f + c = 0 ….(ii)

9+6g+c=09 + 6 g + c = 0 ….(iii)

Also centre is C(g,f)C ( - g , - f ).

Slope of tangents =43= - \frac { 4 } { 3 } \Rightarrow Slope of normal =34= \frac { 3 } { 4 }

f3+g=343g4f+9=0\Rightarrow \frac { f } { 3 + g } = \frac { 3 } { 4 } \Rightarrow 3 g - 4 f + 9 = 0 .....(iv)

Now on solving (ii), (iii) and (iv), we get

g=1,f=32g = - 1 , f = \frac { 3 } { 2 } and c=3c = - 3

Therefore, the equation of circle is

x2+y22x+3y3=0x ^ { 2 } + y ^ { 2 } - 2 x + 3 y - 3 = 0.

Trick : The points (–1, –3) and (3, 0) must satisfy the equation of circle. Circle given in (1) satisfies both the points. Also check whether it touches the line 4x+3y12=04 x + 3 y - 12 = 0 or not.