Solveeit Logo

Question

Question: The equation of the circle passing through the origin and cutting intercepts of length 3 and 4 units...

The equation of the circle passing through the origin and cutting intercepts of length 3 and 4 units from the positive axes, is.

A

x2+y2+6x+8y+1=0x ^ { 2 } + y ^ { 2 } + 6 x + 8 y + 1 = 0

B

x2+y26x8y=0x ^ { 2 } + y ^ { 2 } - 6 x - 8 y = 0

C

x2+y2+3x+4y=0x ^ { 2 } + y ^ { 2 } + 3 x + 4 y = 0

D

x2+y23x4y=0x ^ { 2 } + y ^ { 2 } - 3 x - 4 y = 0

Answer

x2+y23x4y=0x ^ { 2 } + y ^ { 2 } - 3 x - 4 y = 0

Explanation

Solution

Obviously the centre of the circle is (32,2)\left( \frac { 3 } { 2 } , 2 \right).

Therefore, the equation of circle is

(x32)2+(y2)2=(52)2x2+y23x4y=0\left( x - \frac { 3 } { 2 } \right) ^ { 2 } + ( y - 2 ) ^ { 2 } = \left( \frac { 5 } { 2 } \right) ^ { 2 } \Rightarrow x ^ { 2 } + y ^ { 2 } - 3 x - 4 y = 0.