Solveeit Logo

Question

Mathematics Question on Conic sections

The equation of the circle passing through the foci of the ellipse x216+y29=1\frac{x^2}{16}+\frac{y^2}{9}=1 and having centre at (0, 3) is

A

x2+y26y7=0x^2+y^2-6y-7=0

B

x2+y26y+7=0x^2+y^2-6y+7=0

C

x2+y26y5=0x^2+y^2-6y-5=0

D

x2+y26y+5=0x^2+y^2-6y+5=0

Answer

x2+y26y7=0x^2+y^2-6y-7=0

Explanation

Solution

Given equation of ellipse is x216+y29=1\frac {x^2}{16}+ \frac {y^2}{9}=1
a=4,b=3,e=191674a=4,b=3,e= \sqrt {1- \frac {9}{16} } \Rightarrow \frac {\sqrt 7}{4}
\therefore Foci =(±ae,0)=(±4×74,0)=(±7,0)= (\pm ae,0)= \Bigg (\pm 4 \times \frac {\sqrt 7}{4},0 \Bigg ) = ( \pm \sqrt 7,\, 0)
Radius of the circle,r =(ae)2+b2= \sqrt {(ae)^2+b^2}
=7+9=16=4= \sqrt {7+9} = \sqrt16=4
Now, equation of circle is
(x0)2+(y3)2=16(x - 0)^2 + (y - 3)^2 = 16
x2+y26y7=0\therefore x^2 + y^2 - 6y - 7 = 0