Solveeit Logo

Question

Mathematics Question on Conic sections

The equation of the circle passing through (1, 1) and the points of intersection of x2+y2+13x3y=0x^2 + y^2 + 13x - 3y =0 and 2x2+2y2+4x7y25=02x^2 + 2y^2 + 4 x - 7y -2 5 = 0 is

A

4x2+4y230x10y=254x^2 + 4y^2 - 30x - 10y = 25

B

4x2+4y2+30x13y25=04x^2 + 4y^2 + 30x - 13y - 25 = 0

C

4x2+4y217x10y+25=04x^2 + 4y^2 - 17x - 10y + 25 = 0

D

None of the above

Answer

4x2+4y2+30x13y25=04x^2 + 4y^2 + 30x - 13y - 25 = 0

Explanation

Solution

The required equation of circle is
(x2+y2+13x3y)+λ(11x+12y+252+)=0....(i)(x^2 + y^2 + 13x - 3y) + \lambda \Big( 11x+ \frac{1}{2} y+ \frac{25}{2} + ) =0 \, \, \, \, \, \, \, \, \, ....(i)
Its passing through (1, 1)
12+λ(24)=0\Rightarrow \, \, \, \, \, \, \, \, \, \, 12 + \lambda(24) = 0
λ=120\Rightarrow \, \, \, \, \, \, \, \, \, \, \lambda = - \frac{1}{2}0
On putting in E (i), we get
x2+y2+13x3y112x14y254=0x^2 + y^2 + 13x -3y - \frac{11}{2} x- \frac{1}{4}y-\frac{25}{4}=0
4X2+4y2+52x12y22xy25=0\Rightarrow \, \, \, \, 4X^2 + 4y^2 + 52 x - 12 y - 22 x - y - 25 =0
4X2+4y2+30x13y25=0\Rightarrow \, \, \, \, \, \, \, \, \, \, \, 4X^2 + 4y^2 + 30x -13y - 25 =0