Solveeit Logo

Question

Question: The equation of the circle having the lines \(x ( x - 4 ) + y ( y - 3 ) = 0\) is...

The equation of the circle having the lines x(x4)+y(y3)=0x ( x - 4 ) + y ( y - 3 ) = 0 is

A

x2+y2+3x6y40=0x ^ { 2 } + y ^ { 2 } + 3 x - 6 y - 40 = 0

B

x2+y2+6x3y45=0x ^ { 2 } + y ^ { 2 } + 6 x - 3 y - 45 = 0

C

x2+y2+8x+4y20=0x ^ { 2 } + y ^ { 2 } + 8 x + 4 y - 20 = 0

D

x2+y2+4x+8y+20=0x ^ { 2 } + y ^ { 2 } + 4 x + 8 y + 20 = 0

Answer

x2+y2+6x3y45=0x ^ { 2 } + y ^ { 2 } + 6 x - 3 y - 45 = 0

Explanation

Solution

Given pair of normals is x2+2xy+3x+6y=0x ^ { 2 } + 2 x y + 3 x + 6 y = 0 or

(x+2y)(x+3)=0( x + 2 y ) ( x + 3 ) = 0

\therefore Normals are x+3=0x + 3 = 0

The point of intersection of normals x+3=0x + 3 = 0 is the centre of required circle, we get centre x(x4)+y(y3)=0x ( x - 4 ) + y ( y - 3 ) = 0 or

x2+y24x3y=0x ^ { 2 } + y ^ { 2 } - 4 x - 3 y = 0 …..(i)

Its centre C2=(2,3/2)C _ { 2 } = ( 2,3 / 2 ) and radius r=4+94=52r = \sqrt { 4 + \frac { 9 } { 4 } } = \frac { 5 } { 2 }

Since the required circle just contains the given circle (i), the given circle should touch the required circle internally from inside. Therefore, radius of the required circle =C1C2+r= \left| C _ { 1 } - C _ { 2 } \right| + r =(32)2+(3232)2+52= \sqrt { ( - 3 - 2 ) ^ { 2 } + \left( \frac { 3 } { 2 } - \frac { 3 } { 2 } \right) ^ { 2 } } + \frac { 5 } { 2 } =5+52=152= 5 + \frac { 5 } { 2 } = \frac { 15 } { 2 }

Hence, equation of required circle is

(x+3)2+(y32)2=(152)2( x + 3 ) ^ { 2 } + \left( y - \frac { 3 } { 2 } \right) ^ { 2 } = \left( \frac { 15 } { 2 } \right) ^ { 2 } or x2+y2+6x3y45=0x ^ { 2 } + y ^ { 2 } + 6 x - 3 y - 45 = 0