Solveeit Logo

Question

Question: The equation of the circle having centre \(( 1 , - 2 )\) and passing through the point of intersecti...

The equation of the circle having centre (1,2)( 1 , - 2 ) and passing through the point of intersection of lines 3x+y=143 x + y = 14, 2x+5y=182 x + 5 y = 18 is.

A

x2+y22x+4y20=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 20 = 0

B

x2+y22x4y20=0x ^ { 2 } + y ^ { 2 } - 2 x - 4 y - 20 = 0

C

x2+y2+2x4y20=0x ^ { 2 } + y ^ { 2 } + 2 x - 4 y - 20 = 0

D

x2+y2+2x+4y20=0x ^ { 2 } + y ^ { 2 } + 2 x + 4 y - 20 = 0

Answer

x2+y22x+4y20=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 20 = 0

Explanation

Solution

The point of intersection of 3x+y14=03 x + y - 14 = 0 and

2x+5y18=02 x + 5 y - 18 = 0 are

x=18+70152,y=28+5413x=4,y=2x = \frac { - 18 + 70 } { 15 - 2 } , y = \frac { - 28 + 54 } { 13 } \Rightarrow x = 4 , y = 2

i.e., point is (4, 2).

Therefore radius is (9)+(16)=5\sqrt { ( 9 ) + ( 16 ) } = 5 and equation is

x2+y22x+4y20=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 20 = 0 .

Trick : The only circle is x2+y22x+4y20=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 20 = 0 , whose centre is (1, –2­).