Solveeit Logo

Question

Mathematics Question on Circle

The equation of the circle concentric to the circle 2x2+2y23x+6y+2=02{{x}^{2}}+2{{y}^{2}}-3x+6y+2=0 and having area double the area of this circle, is

A

8x2+8y224x+48y13=08{{x}^{2}}+8{{y}^{2}}-24x+48y-13=0

B

16x2+16y2+24x48y13=016{{x}^{2}}+16{{y}^{2}}+24x-48y-13=0

C

16x2+16y224x+48y13=016{{x}^{2}}+16{{y}^{2}}-24x+48y-13=0

D

8x2+8y2+24x48y13=08{{x}^{2}}+8{{y}^{2}}+24x-48y-13=0

Answer

16x2+16y224x+48y13=016{{x}^{2}}+16{{y}^{2}}-24x+48y-13=0

Explanation

Solution

The equation of given circle can be written as
x2+y232x+3y+1=0x^{2}+y^{2}-\frac{3}{2} x+3 y+1=0
whose centre is (34,32)\left(\frac{3}{4},-\frac{3}{2}\right)
and radius, r=916+941r=\sqrt{\frac{9}{16}+\frac{9}{4}-1}
=9+361616=\sqrt{\frac{9+36-16}{16}}
=2916=\sqrt{\frac{29}{16}}
\therefore Area of circle =πr2=\pi r^{2}
=π(2916)=29π16=\pi\left(\frac{29}{16}\right)=\frac{29 \pi}{16}
\Rightarrow Area of required circle =2×29π16=2 \times \frac{29 \pi}{16}
=29π8=\frac{29 \pi}{8}
Let RR be the radius of required circle.
R2=298.\therefore R^{2}=\frac{29}{8} .
Now, equation of circle is
(x34)2+(y+32)2=298\left(x-\frac{3}{4}\right)^{2}+\left(y+\frac{3}{2}\right)^{2}=\frac{29}{8}.
x23x2+916+y2+3y+94298=0\Rightarrow x^{2}-\frac{3 x}{2}+\frac{9}{16}+y^{2}+3 y+\frac{9}{4}-\frac{29}{8}=0
16x2+16y224x+48y13=0\Rightarrow 16 x^{2}+16 y^{2}-24 x+48 y-13=0.