Solveeit Logo

Question

Question: The equation of the chord joining two points (x<sub>1</sub>, y<sub>1</sub>) and (x<sub>2</sub>, y<su...

The equation of the chord joining two points (x1, y1) and (x2, y2) on the rectangular hyperbola xy = c2 is:

A

xx1+x2+yy1+y2=1\frac{x}{x_{1} + x_{2}} + \frac{y}{y_{1} + y_{2}} = 1

B

xx1x2+yy1y2=1\frac{x}{x_{1} - x_{2}} + \frac{y}{y_{1} - y_{2}} = 1

C

xy1+y2+yx1+x2=1\frac{x}{y_{1} + y_{2}} + \frac{y}{x_{1} + x_{2}} = 1

D

xy1y2+yx1x2=1\frac{x}{y_{1} - y_{2}} + \frac{y}{x_{1} - x_{2}} = 1

Answer

xx1+x2+yy1+y2=1\frac{x}{x_{1} + x_{2}} + \frac{y}{y_{1} + y_{2}} = 1

Explanation

Solution

The mid point of the chord is (x1+x22,y1+y22)\left( \frac{x_{1} + x_{2}}{2},\frac{y_{1} + y_{2}}{2} \right).

The equation of the chord in terms of its mid point is T = S'

x(y1+y22)+y(x1+x22)=2(x1+x22)(y1+y22)x\left( \frac{y_{1} + y_{2}}{2} \right) + y\left( \frac{x_{1} + x_{2}}{2} \right) = 2\left( \frac{x_{1} + x_{2}}{2} \right)\left( \frac{y_{1} + y_{2}}{2} \right)

⇒ x(y1 + y2) + y(x1 + x2) = (x1 + x2) (y1 + y2)

xx1+x2+yy1+y2=1\frac{x}{x_{1} + x_{2}} + \frac{y}{y_{1} + y_{2}} = 1.