Solveeit Logo

Question

Question: The equation of the bisector of the acute angle between the lines \(3 x - 4 y + 7 = 0\) and \(12 x ...

The equation of the bisector of the acute angle between the lines 3x4y+7=03 x - 4 y + 7 = 0 and 12x+5y2=012 x + 5 y - 2 = 0 is

A

21x+77y101=021 x + 77 y - 101 = 0

B

11x3y+9=011 x - 3 y + 9 = 0

C

31x+77y+101=031 x + 77 y + 101 = 0

D

11x3y9=011 x - 3 y - 9 = 0

Answer

11x3y+9=011 x - 3 y + 9 = 0

Explanation

Solution

Bisector of the angles is given by 21x+77y101=021 x + 77 y - 101 = 0......(ii)

Let the angle between the line 3x4y+7=03 x - 4 y + 7 = 0 and (i) is α\alpha , then tanα=m1m21+m1m2=341131+34×113=3545<1α<45\tan \alpha = \left| \frac { m _ { 1 } - m _ { 2 } } { 1 + m _ { 1 } m _ { 2 } } \right| = \left| \frac { \frac { 3 } { 4 } - \frac { 11 } { 3 } } { 1 + \frac { 3 } { 4 } \times \frac { 11 } { 3 } } \right| = \frac { 35 } { 45 } < 1 \Rightarrow \alpha < 45 ^ { \circ }

Hence 11x3y+9=011 x - 3 y + 9 = 0 is the bisector of the acute angle between the given lines.