Solveeit Logo

Question

Question: The equation of the base of an equilateral triangle ABC is x + y = 2 and the vertex is (2, –1). The...

The equation of the base of an equilateral triangle ABC is

x + y = 2 and the vertex is (2, –1). The area of the triangle ABC is

A

26\frac { \sqrt { 2 } } { 6 }

B

36\frac { \sqrt { 3 } } { 6 }

C

38\frac { \sqrt { 3 } } { 8 }

D

None

Answer

36\frac { \sqrt { 3 } } { 6 }

Explanation

Solution

Let side AB is x

\ length AD = 2122\frac { | 2 - 1 - 2 | } { \sqrt { 2 } }= 12\frac { 1 } { \sqrt { 2 } }

In DABD, sin 600 =

32=12x\frac { \sqrt { 3 } } { 2 } = \frac { 1 } { \sqrt { 2 } x } Ž x = 23\frac { \sqrt { 2 } } { \sqrt { 3 } }

\ area of equilateral D = 3426=36\frac { \sqrt { 3 } } { 4 } \frac { 2 } { 6 } = \frac { \sqrt { 3 } } { 6 }

x+y=2x + y = 2