Solveeit Logo

Question

Question: The equation of the altitudes AD, BE, CF of a triangle ABC are x + y = 0, x – 4y = 0 and 2x – y = 0 ...

The equation of the altitudes AD, BE, CF of a triangle ABC are x + y = 0, x – 4y = 0 and 2x – y = 0 respectively. If

A ŗ (t, – t) where t varies, then the locus of the centroid of triangle ABC is-

A

y = –5x

B

y = x

C

x = – 5y

D

x = – y

Answer

x = – 5y

Explanation

Solution

All the altitudes pass through (0, 0). Hence origin is the orthocentre A บ (t, – t)

Let B บ (4t1, t1) and C บ (t2, 2t2) satisfying BE and CF.

mBE = 14\frac{1}{4}, mCF = 2, mAC = 2t2+tt2t\frac{2t_{2} + t}{t_{2} - t} & mAB = t1+t4t1t\frac{t_{1} + t}{4t_{1} - t}

so 14\frac { 1 } { 4 } (2t2+tt2t)\left( \frac{2t_{2} + t}{t_{2} - t} \right)= –1 & 2 (t1+t4t1t)\left( \frac{t_{1} + t}{4t_{1} - t} \right)= –1

 t2 =t2\frac{t}{2} and t1 = – t6\frac{t}{6}

so C บ (t2,t)\left( \frac{t}{2},t \right) and B บ (23t,t6)\left( - \frac{2}{3}t, - \frac{t}{6} \right)

Let G(x1, y1) be centroid of DABC and 't' varies

so x1 = 13\frac { 1 } { 3 } (t23t+t2)\left( t - \frac{2}{3}t + \frac{t}{2} \right)= 5t18\frac{5t}{18} and

y1 = 13\frac { 1 } { 3 } (tt6+t)\left( - t - \frac{t}{6} + t \right)= –t18\frac{t}{18}

Hence –x1 = 5y1  x = –5y