Solveeit Logo

Question

Question: The equation of tangent to the curve y = \(\int_{x^{2}}^{x^{3}}\frac{dt}{\sqrt{1 + t^{2}}}\)at x = 1...

The equation of tangent to the curve y = x2x3dt1+t2\int_{x^{2}}^{x^{3}}\frac{dt}{\sqrt{1 + t^{2}}}at x = 1 is-

A

2y\sqrt{2}y + 1 = x

B

3\sqrt{3}x + 1 = y

C

3\sqrt{3}x + 1 + 3\sqrt{3}= y

D

None of these

Answer

2y\sqrt{2}y + 1 = x

Explanation

Solution

At x =1, y =0

dydx\frac{dy}{dx}= 11+x6\frac{1}{\sqrt{1 + x^{6}}}. 3x211+x4\frac{1}{\sqrt{1 + x^{4}}}. 2x

(dydx)(1,0)\left( \frac{dy}{dx} \right)_{(1,0)}= 32\frac{3}{\sqrt{2}}22\frac{2}{\sqrt{2}}= 12\frac{1}{\sqrt{2}}

equation is y = 12\frac{1}{\sqrt{2}} (x –1) Ž 2\sqrt{2}y + 1 = x