Solveeit Logo

Question

Question: The equation of straight line passing through the points (a, b, c) and (a – b, b– c, c – a), is...

The equation of straight line passing through the points

(a, b, c) and (a – b, b– c, c – a), is

A

xaab=ybbc=zcca\frac { x - a } { a - b } = \frac { y - b } { b - c } = \frac { z - c } { c - a }

B

xab=ybc=zca\frac { x - a } { b } = \frac { y - b } { c } = \frac { z - c } { a }

C

xaa=ybb=zcc\frac { x - a } { a } = \frac { y - b } { b } = \frac { z - c } { c }

D

xa2ab=yb2bc=zc2ca\frac { x - a } { 2 a - b } = \frac { y - b } { 2 b - c } = \frac { z - c } { 2 c - a }

Answer

xab=ybc=zca\frac { x - a } { b } = \frac { y - b } { c } = \frac { z - c } { a }

Explanation

Solution

Required line is , xaaba=ybbcb=zccac\frac { x - a } { a - b - a } = \frac { y - b } { b - c - b } = \frac { z - c } { c - a - c }

i.e., xab=ybc=zca\frac { x - a } { b } = \frac { y - b } { c } = \frac { z - c } { a }.