Solveeit Logo

Question

Question: The equation of straight line passing through the intersection of the lines \(x - 2 y = 1\) and \(x...

The equation of straight line passing through the intersection of the lines x2y=1x - 2 y = 1 and x+3y=2x + 3 y = 2 and parallel to 3x+4y=03 x + 4 y = 0 is.

A

3x+4y+5=03 x + 4 y + 5 = 0

B

3x+4y10=03 x + 4 y - 10 = 0

C

3x+4y5=03 x + 4 y - 5 = 0

D

3x+4y+6=03 x + 4 y + 6 = 0

Answer

3x+4y5=03 x + 4 y - 5 = 0

Explanation

Solution

The intersection point of lines x2y=1x - 2 y = 1 and x+3y=2x + 3 y = 2 is (75,15)\left( \frac { 7 } { 5 } , \frac { 1 } { 5 } \right) and the slope of required line =34= - \frac { 3 } { 4 }

∴ Equation of required line is y15=34(x75)y - \frac { 1 } { 5 } = \frac { - 3 } { 4 } \left( x - \frac { 7 } { 5 } \right)

3x4+y=2120+15\frac { 3 x } { 4 } + y = \frac { 21 } { 20 } + \frac { 1 } { 5 }3x+4y=53 x + 4 y = 53x+4y5=03 x + 4 y - 5 = 0.

3x4+y=2120+15\frac { 3 x } { 4 } + y = \frac { 21 } { 20 } + \frac { 1 } { 5 }3x+4y=53 x + 4 y = 53x+4y5=03 x + 4 y - 5 = 0