Solveeit Logo

Question

Physics Question on projectile motion

The equation of projectile is y=axbx2y = ax - bx^2 where aa and bb are the constants. Its horizontal range is

A

abab

B

ab\frac{a}{b}

C

bb

D

aa

Answer

ab\frac{a}{b}

Explanation

Solution

The equation of the trajectory of a projectile motion is y=xtanθgx22u2cos2θy = x \,tan \,\theta -\frac{gx^{2}}{2u^{2} cos^{2} \theta} y=xtanθ(1gxu22tanθcos2θ) y = x\, tan\, \theta \left(1- \frac{gx}{u^{2}2 \,tan \,\theta cos^{2}\theta}\right) =xtanθ(1gxu2sin2θ)= x \,tan \,\theta\left(1-\frac{gx}{u^{2} sin \,2\theta}\right) =xtanθ(1xR)...(i)= x\, tan \,\theta\left(1- \frac{x}{R}\right)\quad...\left(i\right) where RR is the horizontal range of the projectile From the given equation of projectile y=axbx2y = ax -bx^{2} =ax(1bxa)...(ii) = ax \left(1-\frac{bx}{a}\right)\quad...\left(ii\right) Comparing (i)\left(i\right) and (ii)\left(ii\right), we get 1R=ba \frac{1}{R} = \frac{b}{a} or R=abR = \frac{a}{b}