Solveeit Logo

Question

Question: The equation of plane through the line of intersection of planes \(ax + by + cz + d = 0\), \(a'x + b...

The equation of plane through the line of intersection of planes ax+by+cz+d=0ax + by + cz + d = 0, ax+by+cz+d=0a'x + b'y + c'z + d' = 0 and parallel to the line y=0,z=0y = 0,z = 0 is

A

(abab)x+(bcbc)y+(adad)=0(ab' - a'b)x + (bc' - b'c)y + (ad' - a'd) = 0

B

(abab)x+(bcbc)y+(adad)z=0(ab' - a'b)x + (bc' - b'c)y + (ad' - a'd)z = 0

C

(abab)y+(acac)z+(adad)=0(ab' - a'b)y + (ac' - a'c)z + (ad' - a'd) = 0

D

None of these

Answer

(abab)y+(acac)z+(adad)=0(ab' - a'b)y + (ac' - a'c)z + (ad' - a'd) = 0

Explanation

Solution

The equation of a plane through the line of intersection of the planes ax+by+cz+d=0a x + b y + c z + d = 0 and ax+by+cz+d=0a ^ { \prime } x + b ^ { \prime } y + c ^ { \prime } z + d ^ { \prime } = 0 is

(ax+by+cz+d)+λ(ax+by+cz+d)=0( a x + b y + c z + d ) + \lambda \left( a ^ { \prime } x + b ^ { \prime } y + c ^ { \prime } z + d ^ { \prime } \right) = 0

orx(a+λa)+y(b+λb)+z(c+λc)+d+λd=0x \left( a + \lambda a ^ { \prime } \right) + y \left( b + \lambda b ^ { \prime } \right) + z \left( c + \lambda c ^ { \prime } \right) + d + \lambda d ^ { \prime } = 0 ….(i)

This is parallel to x-axis i.e., y=0,z=0y = 0 , z = 0

1(a+λa)+0(b+λb)+0(c+λc)=0λ=aa\therefore 1 \left( a + \lambda a ^ { \prime } \right) + 0 \left( b + \lambda b ^ { \prime } \right) + 0 \left( c + \lambda c ^ { \prime } \right) = 0 \Rightarrow \lambda = - \frac { a } { a ^ { \prime } }

Putting the value of λ in (i), the required plane is

y(abab)+z(acac)+adad=0y \left( a ^ { \prime } b - a b ^ { \prime } \right) + z \left( a ^ { \prime } c - a c ^ { \prime } \right) + a ^ { \prime } d - a d ^ { \prime } = 0

i.e., (abab)y+(acac)z+adad=0\left( a b ^ { \prime } - a ^ { \prime } b \right) y + \left( a c ^ { \prime } - a ^ { \prime } c \right) z + a d ^ { \prime } - a ^ { \prime } d = 0.