Solveeit Logo

Question

Question: The equation of plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the pl...

The equation of plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x+6y+6z=12 x + 6 y + 6 z = 1 is

A

3x+4y+5z=93 x + 4 y + 5 z = 9

B

3x+4y+5z=03 x + 4 y + 5 z = 0

C

3x+4y5z=93 x + 4 y - 5 z = 9

D

None of these

Answer

3x+4y5z=93 x + 4 y - 5 z = 9

Explanation

Solution

We know that, equation of plane is

a(xx1)+b(yy1)+c(zz1)=0a \left( x - x _ { 1 } \right) + b \left( y - y _ { 1 } \right) + c \left( z - z _ { 1 } \right) = 0

It passes through (2, 2, 1)

a(x2)+b(y2)+c(z1)=0a ( x - 2 ) + b ( y - 2 ) + c ( z - 1 ) = 0 ……(i)

Plane (i) also passes through (9, 3, 6) and is perpendicular to the plane 2x+6y+6z=12 x + 6 y + 6 z = 1

\therefore 7a+b+5c=07 a + b + 5 c = 0 ……(ii)

and 2a+6b+6c=02 a + 6 b + 6 c = 0 ……(iii)

a630=b1042=c422\frac { a } { 6 - 30 } = \frac { b } { 10 - 42 } = \frac { c } { 42 - 2 } or a24=b32=c40\frac { a } { - 24 } = \frac { b } { - 32 } = \frac { c } { 40 }

or a3=b4=c5=k\frac { a } { 3 } = \frac { b } { 4 } = \frac { c } { - 5 } = k (say)

From equation (i), 3k(x2)+4k(y2)+(5)k(z1)=03 k ( x - 2 ) + 4 k ( y - 2 ) + ( - 5 ) k ( z - 1 ) = 0

Hence, 3x+4y5z=93 x + 4 y - 5 z = 9