Solveeit Logo

Question

Mathematics Question on Differential equations

The equation of one of the curves whose slope at any point is equal to y+2xy + 2x is

A

y=2(ex+x1)y = 2\left(e^{x} + x -1\right)

B

y=2(exx1)y = 2\left(e^{x} - x -1\right)

C

y=2(exx+1)y = 2\left(e^{x} - x +1\right)

D

y=2(ex+x+1)y = 2\left(e^{x} + x +1\right)

Answer

y=2(exx1)y = 2\left(e^{x} - x -1\right)

Explanation

Solution

Given, dydx=y+2x...(i)\frac{d y}{d x}=y+2 x\,\,\,...(i)
Put y+2x=zy+2 x=z
dydx+2=dzdx\Rightarrow \frac{d y}{d x}+2=\frac{d z}{d x}
dydx=dzdx2...(ii)\Rightarrow \frac{d y}{d x}=\frac{d z}{d x}-2\,\,\,...(ii)
From Eqs. (i) and (ii)
dzdx2=z\frac{d z}{d x}-2=z
dzz+2=dx\Rightarrow \int \frac{d z}{z+2}=\int d x
log(z+2)=x+c\Rightarrow \log (z+2)=x+c
log(y+2x+2)=x+c\Rightarrow \log (y+2 x+2)=x+c
y+2x+2=ex+c\Rightarrow y+2 x+2=e^{x+c}
y+2x+2=exec\Rightarrow y+2 x+2=e^{x} \cdot e^{c}
y=2[exx1]\Rightarrow y=2\left[e^{x}-x-1\right] Taking ec=2 e^{c}=2