Solveeit Logo

Question

Mathematics Question on Parabola

The equation of one of the common tangents to the parabola y2=8xy^2 = 8x and x2+y212x+4=0x^2 + y^2 - 12x + 4 = 0 is

A

y=x+2y = - x + 2

B

y=x2y = x - 2

C

y=x+2y = x + 2

D

None of these

Answer

y=x+2y = x + 2

Explanation

Solution

Any tangent to parabola y2=8xy^2 = 8x is y=mx+2my = mx + \frac{2}{m} ......(i) It touches the circle x2+y212x+4=0x^2 + y^2 - 12x + 4 = 0 . if the length of perpendicular from the centre (6,0)(6, 0) is equal to radius 32\sqrt{32} 6m+2mm2+1=±32\therefore \, \, \frac{6m+ \frac{2}{m}}{\sqrt{m^{2} + 1 }} = \pm\sqrt{32} (3m+1m)2=8(m2+1) \Rightarrow \left(3m + \frac{1}{m}\right)^{2} = 8\left(m^{2} + 1\right) (3m2+1)2=8(m4+m2)\Rightarrow \left(3m^{2 } + 1\right)^{2} = 8 \left(m^{4} + m^{2}\right) m42m2+1=0m=±1\Rightarrow m^{4} - 2m^{2} + 1 = 0\Rightarrow m = \pm1 Hence, the required tangents are y=x+2y = x + 2 and y=x2y = -x - 2.