Solveeit Logo

Question

Mathematics Question on Parabola

The equation of one of the common tangents to the parabola y2=8xy^{2}=8 x and x2+y2x^{2}+y^{2}-

A

y = -x + 2

B

y = x - 2

C

y = x + 2

D

None of these

Answer

y = x + 2

Explanation

Solution

Any tangent to parabola y2=8xy^{2}=8 x is
y=mx+2my=m x+\frac{2}{m} \ldots (i)
It touches the circle x2+y212x+4=0x^{2}+y^{2}-12 x+4=0,
if the length of perpendicular from the centre (6,0)(6,0) is equal to radius 32\sqrt{32}.
6m+2mm2+1=±32\therefore \frac{6 m +\frac{2}{ m }}{\sqrt{ m ^{2}+1}}=\pm \sqrt{32}
(3m+1m)2=8(m2+1)\Rightarrow\left(3 m +\frac{1}{ m }\right)^{2}=8\left( m ^{2}+1\right)
(3m2+1)2=8(m4+m2)\Rightarrow\left(3 m ^{2}+1\right)^{2}=8\left( m ^{4}+ m ^{2}\right)
m42m2+1=0\Rightarrow m ^{4}-2 m ^{2}+1=0
m=±1\Rightarrow m =\pm 1
Hence, the required tangents are y=x+2y=x+2 and y=x2y=-x-2.