Solveeit Logo

Question

Question: The equation of normal at the point (0, 3) of the ellipse \(9x^{2} + 5y^{2} = 45\)is...

The equation of normal at the point (0, 3) of the ellipse 9x2+5y2=459x^{2} + 5y^{2} = 45is

A

y3=0y - 3 = 0

B

y+3=0y + 3 = 0

C

x-axis

D

y-axis

Answer

y-axis

Explanation

Solution

For x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, equation of normal at point (x1,y1)(x_{1},y_{1}), is

(xx1)a2x1=(yy1)b2y1\frac{(x - x_{1})a^{2}}{x_{1}} = \frac{(y - y_{1})b^{2}}{y_{1}}

Here, (x1,y1)=(0,3)(x_{1},y_{1}) = (0,3) and a2=5a^{2} = 5, b2=9b^{2} = 9,

Therefore (x0)0.5=(y3)3.9\frac{(x - 0)}{0}.5 = \frac{(y - 3)}{3}.9or x=0x = 0 i.e., y-axis