Solveeit Logo

Question

Question: The equation of motion of a simple harmonic motion is...

The equation of motion of a simple harmonic motion is

A

d2xdt2=ω2x\frac{d^{2}x}{dt^{2}} = - \omega^{2}x

B

d2xdt2=ω21\frac{d^{2}x}{dt^{2}} = - \omega^{2}1

C

d2xdt2=ωx\frac{d^{2}x}{dt^{2}} = - \omega x

D

d2xdt2=ωt\frac{d^{2}x}{dt^{2}} = \omega t

Answer

d2xdt2=ω2x\frac{d^{2}x}{dt^{2}} = - \omega^{2}x

Explanation

Solution

In SHM, Acceleration,

a=d2xdt2=ω2xa = \frac{d^{2}x}{dt^{2}} = - \omega^{2}x