Solveeit Logo

Question

Question: The equation of motion of a projectile is \(y = ax - bx^{2}\), where a and b are constants of motion...

The equation of motion of a projectile is y=axbx2y = ax - bx^{2}, where a and b are constants of motion. Match the quantities of Column I with the relations of Column II.

Column IColumn II
(A)

The initial velocity of

projection

(p)$$\frac{a}{b}$$
(B)

The horizontal range

of projectile

(q)$$a\sqrt{\frac{2}{bg}}$$
(C)

The maximum

vertical height

attained by projectile

(r)$$\frac{a^{2}}{4b}$$
(D)

The time of flight of

projectile

(s)$$\sqrt{\frac{g(1 + a^{2})}{2b}}$$
A

A – p, B – q, C – r, D – s

B

A – s, B – p, C – q, D – r

C

A – s, B – p, C – r, D – q

D

A – p, B – s, C – r, D – q

Answer

A – s, B – p, C – r, D – q

Explanation

Solution

Comparing given equations , y=axbx2y = ax - bx^{2}with the equations of projectile motions

y=xtanθgx22u2cos2θy = x\tan\theta - \frac{gx^{2}}{2u^{2}\cos^{2}\theta}

We get,tanθ=a\tan\theta = a …..(i)

And g2u2cos2θ=b\frac{g}{2u^{2}\cos^{2}\theta} = b …. (ii)

gsec2θ2u2=b\frac{g\sec^{2}\theta}{2u^{2}} = bor g(1+tan2θ)2u2=b\frac{g(1 + \tan^{2}\theta)}{2u^{2}} = b

Or u2=g(1+tan2θ)2b=g(1+a2)2bu^{2} = \frac{g(1 + \tan^{2}\theta)}{2b} = \frac{g(1 + a^{2})}{2b} (using (i))

Or u=[g(1+a2)2b]u = \sqrt{\left\lbrack \frac{g(1 + a^{2})}{2b} \right\rbrack}A –s

(2) Horizontal range=u2sin2θg=2u2sinθcosθg= \frac{u^{2}\sin 2\theta}{g} = \frac{2u^{2}\sin\theta\cos\theta}{g}

2u2cos2θg×tanθ=ab\frac{2u^{2}\cos^{2}\theta}{g} \times \tan\theta = \frac{a}{b} (Using (i) and (ii)) B – p

(3) Maximum height=u2sin2θ2g= \frac{u^{2}\sin^{2}\theta}{2g}

=u2cos2θ2g×tan2θ= \frac{u^{2}\cos^{2}\theta}{2g} \times \tan^{2}\theta

2u2cos2θ4g×tan2θ=a24b\frac{2u^{2}\cos^{2}\theta}{4g} \times \tan^{2}\theta = \frac{a^{2}}{4b} (Using (i) and (ii))

C – r

(4) From (ii),

b=g2u2cos2θ,b = \frac{g}{2u^{2}\cos^{2}\theta},

Or u2cos2θ=g2borucosθ=g2bu^{2}\cos^{2}\theta = \frac{g}{2b}oru\cos\theta = \sqrt{\frac{g}{2b}} …… (iii)

Time of flight)=2usinθg=2ucosθg×tanθ= \frac{2u\sin\theta}{g} = \frac{2u\cos\theta}{g} \times \tan\theta

=2gg2b×a=a2bg= \frac{2}{g}\sqrt{\frac{g}{2b}} \times a = a\sqrt{\frac{2}{bg}} (Using (i) and (iii))

D – q