Question
Question: The equation of motion of a projectile is \(y = ax - bx^{2}\), where a and b are constants of motion...
The equation of motion of a projectile is y=ax−bx2, where a and b are constants of motion. Match the quantities of Column I with the relations of Column II.
Column I | Column II | ||
---|---|---|---|
(A) | The initial velocity of projection | (p) | $$\frac{a}{b}$$ |
(B) | The horizontal range of projectile | (q) | $$a\sqrt{\frac{2}{bg}}$$ |
(C) | The maximum vertical height attained by projectile | (r) | $$\frac{a^{2}}{4b}$$ |
(D) | The time of flight of projectile | (s) | $$\sqrt{\frac{g(1 + a^{2})}{2b}}$$ |
A – p, B – q, C – r, D – s
A – s, B – p, C – q, D – r
A – s, B – p, C – r, D – q
A – p, B – s, C – r, D – q
A – s, B – p, C – r, D – q
Solution
Comparing given equations , y=ax−bx2with the equations of projectile motions
y=xtanθ−2u2cos2θgx2
We get,tanθ=a …..(i)
And 2u2cos2θg=b …. (ii)
2u2gsec2θ=bor 2u2g(1+tan2θ)=b
Or u2=2bg(1+tan2θ)=2bg(1+a2) (using (i))
Or u=[2bg(1+a2)]A –s
(2) Horizontal range=gu2sin2θ=g2u2sinθcosθ
g2u2cos2θ×tanθ=ba (Using (i) and (ii)) B – p
(3) Maximum height=2gu2sin2θ
=2gu2cos2θ×tan2θ
4g2u2cos2θ×tan2θ=4ba2 (Using (i) and (ii))
C – r
(4) From (ii),
b=2u2cos2θg,
Or u2cos2θ=2bgorucosθ=2bg …… (iii)
Time of flight)=g2usinθ=g2ucosθ×tanθ
=g22bg×a=abg2 (Using (i) and (iii))
D – q