Solveeit Logo

Question

Question: The equation of line passing through \(\left( - 1,\frac{\pi}{2} \right)\) and perpendicular to \(\sq...

The equation of line passing through (1,π2)\left( - 1,\frac{\pi}{2} \right) and perpendicular to 3sinθ+2cosθ=4r\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r} is

A

2=3rcosθ2rsinθ2 = \sqrt{3}r\cos\theta - 2r\sin\theta

B

5=23rsinθ+4rcosθ5 = - 2\sqrt{3}r\sin\theta + 4r\cos\theta

C

2=3rcosθ+2rsinθ2 = \sqrt{3}r\cos\theta + 2r\sin\theta

D

5=23rsinθ+4rcosθ5 = 2\sqrt{3}r\sin\theta + 4r\cos\theta

Answer

2=3rcosθ2rsinθ2 = \sqrt{3}r\cos\theta - 2r\sin\theta

Explanation

Solution

Equation of a line, perpendicular to 3sinθ+2cosθ=4r\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r} is 3sin(π2+θ)+2cos(π2+θ)=kr\sqrt{3}\sin\left( \frac{\pi}{2} + \theta \right) + 2\cos\left( \frac{\pi}{2} + \theta \right) = \frac{k}{r}

It is passing through (1,π2)\left( - 1,\frac{\pi}{2} \right). Hence,

3sinπ+2cosπ=k/1\sqrt{3}\sin\pi + 2\cos\pi = k/ - 1k=2k = 2

\therefore 3cosθ2sinθ=2r\sqrt{3}\cos\theta - 2\sin\theta = \frac{2}{r}2=3rcosθ2rsinθ2 = \sqrt{3}r\cos\theta - 2r\sin\theta.