Solveeit Logo

Question

Question: The equation of ellipse for which, distance between directrices is \(\dfrac{{25}}{2}\) and the minor...

The equation of ellipse for which, distance between directrices is 252\dfrac{{25}}{2} and the minor axis is 6, is
A. x225+y29=1\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1
B. x2225+y29=16\dfrac{{{x^2}}}{{225}} + \dfrac{{{y^2}}}{9} = 16
C. x29+y225=1\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{{25}} = 1
D. x2625+y281=1\dfrac{{{x^2}}}{{625}} + \dfrac{{{y^2}}}{{81}} = 1

Explanation

Solution

First let the equations of ellipse be of the form x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 or x2b2+y2a2=1\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1. Next find the value of aa in terms of ee using the formula of length of directrix, which is 2ae\dfrac{{2a}}{e}, where aa is half the major the axis and ee is the eccentricity of the ellipse. Next, use the given length of minor axis bb and the condition b2=a2(1e2){b^2} = {a^2}\left( {1 - {e^2}} \right) to find the value of ee. Substitute the value of ee to find the value of aa and hence the equation of ellipse.

Complete step by step solution:
Let the equation of the ellipse are x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 or x2b2+y2a2=1\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1
We are given that the distance between two directrices is 252\dfrac{{25}}{2}.
Then, the length of the directrix is 2ae\dfrac{{2a}}{e}, where aa is half the major the axis and ee is the eccentricity of the ellipse.
Therefore,
252=2ae ae=254  \dfrac{{25}}{2} = \dfrac{{2a}}{e} \\\ \Rightarrow \dfrac{a}{e} = \dfrac{{25}}{4} \\\
a=254ea = \dfrac{{25}}{4}e
Also, we know that b2=a2(1e2){b^2} = {a^2}\left( {1 - {e^2}} \right), where bb is half of the minor axis, aa is half the major the axis and ee is the eccentricity of the ellipse.
We are given that 6 is the length of the major axis, then b=3b = 3
This implies,
32=a2a2e2 9=a2a2e2  {3^2} = {a^2} - {a^2}{e^2} \\\ \Rightarrow 9 = {a^2} - {a^2}{e^2} \\\
On substituting the value of aa we will get,
9=(254e)2(254e)2e2 9=625e2625e416 625e4625e2+144=0  9 = {\left( {\dfrac{{25}}{4}e} \right)^2} - {\left( {\dfrac{{25}}{4}e} \right)^2}{e^2} \\\ \Rightarrow 9 = \dfrac{{625{e^2} - 625{e^4}}}{{16}} \\\ \Rightarrow 625{e^4} - 625{e^2} + 144 = 0 \\\
Factorise the above equation.
625e4400e2225e2+144=0 25e2(25e216)9(25e216)=0 (25e29)(25e216)=0  625{e^4} - 400{e^2} - 225{e^2} + 144 = 0 \\\ \Rightarrow 25{e^2}\left( {25{e^2} - 16} \right) - 9\left( {25{e^2} - 16} \right) = 0 \\\ \Rightarrow \left( {25{e^2} - 9} \right)\left( {25{e^2} - 16} \right) = 0 \\\
Equate each factor to 0 to find the value of ee
(25e29)=0 e2=925 e=35  \left( {25{e^2} - 9} \right) = 0 \\\ \Rightarrow {e^2} = \dfrac{9}{{25}} \\\ \Rightarrow e = \dfrac{3}{5} \\\
(25e216)=0 e2=1625 e=45  \left( {25{e^2} - 16} \right) = 0 \\\ \Rightarrow {e^2} = \dfrac{{16}}{{25}} \\\ \Rightarrow e = \dfrac{4}{5} \\\
When e=35e = \dfrac{3}{5}, then
a=254(35) a=154  a = \dfrac{{25}}{4}\left( {\dfrac{3}{5}} \right) \\\ a = \dfrac{{15}}{4} \\\
Then, the equation of ellipse will be
x2(154)2+y2(3)2=1 16x2225+y29=1  \dfrac{{{x^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\\ \Rightarrow \dfrac{{16{x^2}}}{{225}} + \dfrac{{{y^2}}}{9} = 1 \\\
Or
x2(3)2+y2(154)2=1 x29+16y2225=1  \dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{16{y^2}}}{{225}} = 1 \\\
If e=45e = \dfrac{4}{5}, then
a=254(45) a=5  a = \dfrac{{25}}{4}\left( {\dfrac{4}{5}} \right) \\\ a = 5 \\\
Then, the equation of the ellipse is
x2(5)2+y2(3)2=1 x225+y29=1  \dfrac{{{x^2}}}{{{{\left( 5 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1 \\\
But, major axis could be yy axis and minor could be yy axis.
Then the equation of ellipse will also be
x2(3)2+y252=1 x29+y225=1  \dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{5^2}}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{{25}} = 1 \\\

Hence, option A and C are correct.

Note:
The standard equation of the ellipses are x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 or x2b2+y2a2=1\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1, where a>ba > b.
When the denominator corresponding to xx is greater, then the major axis is along the xx axis and if denominator corresponding to the yy axis is the major axis.