Solveeit Logo

Question

Question: The equation of circle with centre (1, 2) and tangent \(x + y - 5 = 0\)is....

The equation of circle with centre (1, 2) and tangent x+y5=0x + y - 5 = 0is.

A

x2+y2+2x4y+6=0x ^ { 2 } + y ^ { 2 } + 2 x - 4 y + 6 = 0

B

x2+y22x4y+3=0x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 3 = 0

C

x2+y22x+4y+8=0x ^ { 2 } + y ^ { 2 } - 2 x + 4 y + 8 = 0

D

x2+y22x4y+8=0x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 8 = 0

Answer

x2+y22x4y+3=0x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 3 = 0

Explanation

Solution

\bullet \bullet Radius of circle = perpendicular distance of tangent from the centre of circle

\Rightarrow r=1+251+1=2r = \frac { 1 + 2 - 5 } { \sqrt { 1 + 1 } } = \sqrt { 2 }

Hence the equation of required circle is

(x1)2+(y2)2=(2)2( x - 1 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = ( \sqrt { 2 } ) ^ { 2 } x2+y22x4y+3=0\Rightarrow x ^ { 2 } + y ^ { 2 } - 2 x - 4 y + 3 = 0