Question
Question: The equation of circle with centre (1, 2) and tangent \(x + y - 5 = 0\)is....
The equation of circle with centre (1, 2) and tangent x+y−5=0is.
A
x2+y2+2x−4y+6=0
B
x2+y2−2x−4y+3=0
C
x2+y2−2x+4y+8=0
D
x2+y2−2x−4y+8=0
Answer
x2+y2−2x−4y+3=0
Explanation
Solution
∙∙ Radius of circle = perpendicular distance of tangent from the centre of circle

⇒ r=1+11+2−5=2
Hence the equation of required circle is
(x−1)2+(y−2)2=(2)2 ⇒x2+y2−2x−4y+3=0