Solveeit Logo

Question

Question: The equation of a wave is: y = 2sin(4x - 3t) What will be the equation of the reflected wave from a ...

The equation of a wave is: y = 2sin(4x - 3t) What will be the equation of the reflected wave from a free surface?

Answer

y = -2sin(4x+3t)

Explanation

Solution

For a wave on a string, the boundary condition at a free end is that the slope (∂y/∂x) vanishes at the free surface. With the incident wave

yi=2sin(4x3t)y_i = 2\sin(4x-3t)

assume the reflected wave has the form

yr=2sin(4x+3t+ϕ).y_r = 2\sin(4x+3t+\phi).

At a free end (say at x=0x=0), the net transverse slope must be zero:

x(yi+yr)x=0=0.\left.\frac{\partial}{\partial x}(y_i+y_r)\right|_{x=0} = 0.

Differentiate:

yix=8cos(4x3t),yrx=8cos(4x+3t+ϕ).\frac{\partial y_i}{\partial x} = 8\cos(4x-3t), \quad \frac{\partial y_r}{\partial x} = 8\cos(4x+3t+\phi).

At x=0x=0:

8cos(3t)+8cos(3t+ϕ)=8cos3t+8cos(3t+ϕ)=0.8\cos(-3t) + 8\cos(3t+\phi) = 8\cos3t + 8\cos(3t+\phi) = 0.

Dividing by 8 and using the cosine sum identity:

cos3t+cos(3t+ϕ)=2cos(3t+ϕ2)cosϕ2=0.\cos 3t + \cos(3t+\phi) = 2\cos\Big(3t+\frac{\phi}{2}\Big)\cos\frac{\phi}{2}=0.

For this to hold for all tt, we require

cosϕ2=0ϕ2=π2+nπϕ=π+2nπ.\cos\frac{\phi}{2}=0 \quad\Longrightarrow\quad \frac{\phi}{2}=\frac{\pi}{2}+n\pi \quad \Longrightarrow \quad \phi=\pi+2n\pi.

Choosing the principal value ϕ=π\phi=\pi, we get

yr=2sin(4x+3t+π)=2sin(4x+3t).y_r = 2\sin(4x+3t+\pi) = -2\sin(4x+3t).

Thus, the reflected wave from a free surface is:

y=2sin(4x+3t).y = -2\sin(4x+3t).

Brief Explanation:

  1. Assume reflected wave: yr=2sin(4x+3t+ϕ)y_r= 2\sin(4x+3t+\phi).
  2. Apply free-end condition x(yi+yr)=0\frac{\partial}{\partial x}(y_i+y_r)=0 at x=0x=0 to find ϕ=π\phi=\pi.
  3. Hence, yr=2sin(4x+3t)y_r= -2\sin(4x+3t).