Solveeit Logo

Question

Question: The equation of a wave is given by y = 10 sin\(\left( \frac{2\pi}{45}t + \alpha \right)\) If the dis...

The equation of a wave is given by y = 10 sin(2π45t+α)\left( \frac{2\pi}{45}t + \alpha \right) If the displacement is 5 cm at t = 0, then the total phase at t = 7.5 s is

A

π3\frac{\pi}{3}

B

π2\frac{\pi}{2}

C

π6\frac{\pi}{6}

D

π\pi

Answer

π2\frac{\pi}{2}

Explanation

Solution

The given equations of a wave is

y=10sin(2π45t+α)y = 10\sin\left( \frac{2\pi}{45}t + \alpha \right)

At t = 0, y = 5cm

5=10sinα\therefore 5 = 10\sin\alpha

12=sinα\frac{1}{2} = \sin\alpha

sin(π6)=sinα\sin\left( \frac{\pi}{6} \right) = \sin\alpha

α=π6\alpha = \frac{\pi}{6} ….. (i)

Hence, the total phase at

t=7.5s(=152s)t = 7.5s\left( = \frac{15}{2}s \right)

φ=2π45×152+α=π3+π6\varphi = \frac{2\pi}{45} \times \frac{15}{2} + \alpha = \frac{\pi}{3} + \frac{\pi}{6} (Using (i))

=3π6=π2= \frac{3\pi}{6} = \frac{\pi}{2}