Solveeit Logo

Question

Physics Question on Waves

The equation of a simple harmonic wave is given by y=3sinπ2(50tx),y=3 \sin \frac{\pi}{2}(50t-x), where xx and yy are in metres and tt is in seconds. The ratio of maximum particle velocity to the wave velocity is

A

2π2\pi

B

32π\frac{3}{2}\pi

C

3π3\pi

D

23π\frac{2}{3}\pi

Answer

32π\frac{3}{2}\pi

Explanation

Solution

The given wave equation is y=3sinπ2(50tx)y=3 \sin \frac{\pi}{2}(50t -x) y=3\sin\Big(25\pi t-\frac{\pi}{2}x\Big)\hspace25mm ...(i) The standard wave equation is y = A \sin(\omega t - kx)\hspace25mm ...(ii) Comparing (i) and (ii), we get ω=25π,k=π2\omega=25\pi, k=\frac{\pi}{2} Wave velocity, υ=ωk=25π(π/2)=50ms1\upsilon=\frac{\omega}{k}=\frac{25\pi}{(\pi/2)}=50 \,ms^{-1} Particle velocity, υp=gydt(3sin((25πtπ2))\upsilon_p=\frac{gy}{dt}\Bigg(3 \sin\Bigg((25\pi t-\frac{\pi}{2}\Bigg)\Bigg) =75πcos(25πtπ2)=75\pi \cos \Bigg(25\pi t-\frac{\pi}{2}\Bigg) Maximum particle velocity,(υp)max=75πms1(\upsilon_p)_{max}=75 \pi \,ms^{-1} (υp)maxυ=75π50=32π\therefore \frac{(\upsilon_p)_{max}}{\upsilon}=\frac{75 \pi}{50}=\frac{3}{2}\pi