Solveeit Logo

Question

Physics Question on simple harmonic motion

The equation of a simple harmonic progressive wave is given by y=Asin(100πt3x)y = A \,sin \,(100\, \pi t - 3x) . Find the distance between 22 particles having a phase difference of π3\frac{\pi}{3} .

A

π9m\frac{\pi}{9}m

B

π18m\frac{\pi}{18}m

C

π6m\frac{\pi}{6}m

D

π3m\frac{\pi}{3}m

Answer

π9m\frac{\pi}{9}m

Explanation

Solution

Given, y=Asin(100πt3x)y=A \sin (100 \pi t-3 x)
The general equation,
y=Asin(ωtkx)y =A \sin (\omega t-k x)
k=3\therefore \,\,\, k =3
and k=2πλ\,\,\, k=\frac{2 \pi}{\lambda}
or λ=2πk\,\,\, \lambda=\frac{2 \pi}{k}
λ=2π3\lambda=\frac{2 \pi}{3}
Phase difference, ϕ=π3\phi=\frac{\pi}{3}
2πλx=π3\frac{2 \pi}{\lambda} \cdot x=\frac{\pi}{3}
orx=π3×λ2π\,\,\,x =\frac{\pi}{3} \times \frac{\lambda}{2 \pi}
x=π3×2π3×2πx =\frac{\pi}{3} \times \frac{2 \pi}{3 \times 2 \pi}
Distance, x=π9mx=\frac{\pi}{9} m