Solveeit Logo

Question

Question: The equation of a plane passing through the line of intersection of the planes \[x + 2y + 3z = 2\] a...

The equation of a plane passing through the line of intersection of the planes x+2y+3z=2x + 2y + 3z = 2 and xy+z=3x - y + z = 3 and at a distance 232\sqrt 3 from the point (3, 1, 1)\left( {3,{\text{ }}1,{\text{ }} - 1} \right) is
A.5x11y+z=175x - 11y + z = 17
B.2x+y=321\sqrt 2 x + y = 3\sqrt 2 - 1
C.x+y+z=3x + y + z = \sqrt 3
D.x2y=12x - \sqrt 2 y = 1 - \sqrt 2

Explanation

Solution

Hint : In order to determine the required equation of a plane passing through the line intersection of the plane x+2y+3z=2x + 2y + 3z = 2 and xy+z=3x - y + z = 3.First, we compare this equation with the two plane P1+λP2=0,λR{{\rm P}_1} + \lambda {{\rm P}_2} = 0,\lambda \in \mathbb{R} then we get the equation as ax+by+cz+d=0ax + by + cz + d = 0 with the points
.The distance between the line is 232\sqrt 3 . Adding the two planes does not yield their line of intersection. In fact, it is the equation of a plane passing through their line of intersection, rather than a line with the point (3, 1, 1)\left( {3,{\text{ }}1,{\text{ }} - 1} \right) as (x,y,z)(x,y,z). We use the formula for the plane distance is D=ax+by+cz+da2+b2+c2D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}. We need to solve the question to get the required solution.

Complete step-by-step answer :
In this given problem,
We are given the line of intersection of planes x+2y+3z=2x + 2y + 3z = 2and xy+z=3x - y + z = 3 at a distance 232\sqrt 3 from the point (3, 1, 1)\left( {3,{\text{ }}1,{\text{ }} - 1} \right).
In this question we are supposed to find out the equation of a plane passing through the line of intersection of the planes
Let us consider the two plane equation asP1:x+2y+3z=2{P_1}:x + 2y + 3z = 2and P2:xy+z=3{P_2}:x - y + z = 3,
Let DD be the distance,D=23D = \dfrac{2}{{\sqrt 3 }}
For this we have to first determine the plane equation P1+λP2=0{{\rm P}_1} + \lambda {{\rm P}_2} = 0 as (x+2y+3z2)+λ(xy+z3)=0(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0 to simplify the this equation as the form ax+by+cz+d=0ax + by + cz + d = 0 with the point (x,y,z)(x,y,z) as (3, 1, 1)\left( {3,{\text{ }}1,{\text{ }} - 1} \right).
Now, we have to simplify the equation (x+2y+3z2)+λ(xy+z3)=0(x + 2y + 3z - 2) + \lambda (x - y + z - 3) = 0

(x+2y+3z2+λxλy+λz3λ)=0 (1+λ)x+(2λ)y+(3+λ)z(2+3λ)=0(3) (x + 2y + 3z - 2 + \lambda x - \lambda y + \lambda z - 3\lambda ) = 0 \\\ (1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 \to (3) \\\

Here, directly compare the equation(1+λ)x+(2λ)y+(3+λ)z(2+3λ)=0(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0 withax+by+cz+d=0ax + by + cz + d = 0. Where, a=(1+λ),b=(2λ),c=(3+λ),d=(2+3λ)a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )
The formula for the plane distance is D=ax+by+cz+da2+b2+c2D = \dfrac{{\left| {ax + by + cz + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}
We have the values a=(1+λ),b=(2λ),c=(3+λ),d=(2+3λ)a = (1 + \lambda ),b = (2 - \lambda ),c = (3 + \lambda ),d = (2 + 3\lambda )and the given distance D=23D = \dfrac{2}{{\sqrt 3 }} By substitute all the values and points (3, 1, 1)\left( {3,{\text{ }}1,{\text{ }} - 1} \right) into the equation to find out the valueλ\lambda
23=3(1+λ)+(2λ)(3+λ)(2+3λ)(1+λ)2+(2λ)2+(3+λ)2\Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3(1 + \lambda ) + (2 - \lambda ) - (3 + \lambda ) - (2 + 3\lambda )} \right|}}{{\sqrt {{{(1 + \lambda )}^2} + {{(2 - \lambda )}^2} + {{(3 + \lambda )}^2}} }}.
Comparing the denominator(1+λ)2,((2λ)2,(3+λ)2{(1 + \lambda )^2},({(2 - \lambda )^2},{(3 + \lambda )^2} with the formula (a+b)2=a2+b2+2ab,(ab)2=a2+b22ab{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab by expanding the bracket on RHS, we get

23=3+3λ+2λ3λ23λ1+λ2+2λ+4+λ24λ+9+λ2+6λ 23=2λ3λ2+4λ+14  \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| {3 + 3\lambda + 2 - \lambda - 3 - \lambda - 2 - 3\lambda } \right|}}{{\sqrt {1 + {\lambda ^2} + 2\lambda + 4 + {\lambda ^2} - 4\lambda + 9 + {\lambda ^2} + 6\lambda } }} \\\ \Rightarrow \dfrac{2}{{\sqrt 3 }} = \dfrac{{\left| { - 2\lambda } \right|}}{{\sqrt {3{\lambda ^2} + 4\lambda + 14} }} \;

Take square on both sides of numerator and denominator, we get

\Rightarrow \dfrac{{{{(2)}^2}}}{{{{(\sqrt 3 )}^2}}} = \dfrac{{{{( - 2\lambda )}^2}}}{{{{(\sqrt {3{\lambda ^2} + 4\lambda + 14} )}^2}}} \\\ \Rightarrow \dfrac{4}{3} = \dfrac{{4{\lambda ^2}}}{{(3{\lambda ^2} + 4\lambda + 14)}}$$ By simplify in further step to solving the fraction on both sides, we get

4(3{\lambda ^2} + 4\lambda + 14) = 4(3){\lambda ^2} \\
3{\lambda ^2} + 4\lambda + 14 = 3{\lambda ^2} ;

Combining all the terms together to find out the value,$$\lambda $$, we get

3{\lambda ^2} + 4\lambda + 14 - 3{\lambda ^2} = 0 \Rightarrow 4\lambda + 14 = 0 \\
4\lambda = - 14 \Rightarrow \lambda = - \dfrac{{14}}{4} ;

Therefore, the value of $$\lambda = - \dfrac{7}{2}$$. Then Let the equation $$(1 + \lambda )x + (2 - \lambda )y + (3 + \lambda )z - (2 + 3\lambda ) = 0$$ on comparing with $$ax + by + cz + d = 0$$ and substitute the $$\lambda = - \dfrac{7}{2}$$ into plane equation.

\lambda = - \dfrac{7}{2} \Rightarrow \left( {1 - \dfrac{7}{2}} \right)x + \left( {2 + \dfrac{7}{2}} \right)y + \left( {3 - \dfrac{7}{2}} \right)z - \left( {2 + 3\left( {\dfrac{{ - 7}}{2}} \right)} \right) = 0 ;

TakeLCMontheaboveequation,sowegetTake LCM on the above equation, so we get

\left( {\dfrac{{2 - 7}}{2}} \right)x + \left( {\dfrac{{4 + 7}}{2}} \right)y + \left( {\dfrac{{6 - 7}}{2}} \right)z - \left( {\dfrac{{4 - 21}}{2}} \right) = 0 \\
- \dfrac{5}{2}x + \dfrac{{11}}{2}y - \dfrac{1}{2}z + \dfrac{{17}}{2} = 0 ;

We perform multiplication on both sides by $$2$$ to simplify the fraction, we can get $$ - 5x + 11y - z + 17 = 0$$ Therefore, The equation of a plane passing through the line of intersection of the planes $$x + 2y + 3z = 2$$ and $$x - y + z = 3$$ and at a distance $$2\sqrt 3 $$from the point $$\left( {3,{\text{ }}1,{\text{ }} - 1} \right)$$ is $$ - 5x + 11y - z + 17 = 0$$ So, the final answer is option A: $$5x - 11y + z = 17$$ **So, the correct answer is “Option A”.** **Note** : In this problem, always try to understand the mathematical statement .when using the distance formula, use the notation for the point $$\left( {3,{\text{ }}1,{\text{ }} - 1} \right)$$ as $$(x,y,z)$$. This will help to find out the final equation by substituting the values into the formula.