Question
Mathematics Question on Three Dimensional Geometry
The equation of a plane passing through the line of intersection of the planes x+2y+3z=2 and x−y+z=3 and at a distance 32 from the point (3,1,−1) is
5x−11y+z=17
2x+y=32−1
x+y+z=3
x−2y=1−2
5x−11y+z=17
Solution
PLAN
(i) Equation of plane through intersection of two planes,
i.e,(a1x+b1y+c1z+d1)+λ
\hspace30mm (a_2 x +b_2 y +c_2 z +d_2) = 0
(ii) Distance of a point (x1,y1,z1) from
\hspace15mm ax+by+cz+d = 0
\hspace50mm =\frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}}
Equation of plane passing through intersection of two
planes x + 2y + 3z = 2 and x - y + z = 3 is
(x+2y+3z−2)+λ(x−y+z−3)=0
⇒(1+λ)x+(2+λ)y+(3+λ)z−(2+3λ)=0
whose distance from (3,1, -1) is 32.
⇒(1+λ)2+(2−λ)2+(3+λ)2∣3(1+λ)+1.(2−λ)−1(3+λ)−(2+3λ)∣=32
⇒ \hspace50mm \frac{| -2 \lambda\, | }{\sqrt {3\lambda^2 + 4 \lambda^2 +14}} = \frac{2}{\sqrt 3}
\Rightarrow \hspace10mm 3\lambda^2=3\lambda^2+4\lambda+14
\Rightarrow \hspace15mm \lambda= -\frac{7}{2}
∴(1−27)x+(2−27)y+(3−27)z−(2−221)=0
\Rightarrow \hspace40mm −25x+211y−21z+217=0
or \hspace50mm {5x} -{11} y +z+ 17 =0