Solveeit Logo

Question

Mathematics Question on Straight lines

The equation of a plane containing the line x+13=y32=z+21\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} and the point (0,7, - 7) is

A

x+y+z=0x+y + z = 0

B

x+2y+z=21x+ 2y + z=21

C

3x2y+5z+35=03x-2y + 5z+35 = 0

D

3x+2y+5z+21=03x + 2y + 5z+21 = 0

Answer

x+y+z=0x+y + z = 0

Explanation

Solution

The equation of a plane containing the line x+13=y32=z+21\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1} is a (x+1)+b(y3)+c(z+2)=0(x + 1) + b (y - 3) + c (z + 2) = 0 where 3a+2b+c=0...(A)- 3a + 2b + c = 0 \quad\quad...\left(A\right) This passes through (0,7,7)\left(0, 7, - 7\right) a(0+1)+b(73)+c(7+2)=0\therefore a \left(0 + 1\right) + b \left(7 - 3\right) + c \left(- 7 + 2\right) = 0 a+4b5c=0...(B)\Rightarrow a + 4b - 5c = 0 \quad\quad...\left(B\right) On solving equation (A)\left(A\right) and (B)\left(B\right) we get a=1,b=1,c=1a=1, b=1, c=1 \therefore Required plane is x+1+y3+z+2=0x + 1 + y - 3 + z + 2 = 0 x+y+z=0\Rightarrow x+y + z= 0