Solveeit Logo

Question

Question: The equation of a line is \(5x-3=15y+7=3-10z\) . Find the direction cosines of the given line....

The equation of a line is 5x3=15y+7=310z5x-3=15y+7=3-10z . Find the direction cosines of the given line.

Explanation

Solution

The direction ratios of the line xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} is a, b, c. hence we will write the given equation in this form and first find direction ratios. Now if a, b, c. are direction ratios of line then direction cosines are given by aa2+b2+c2\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} , ba2+b2+c2\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} , ca2+b2+c2\dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}

Complete step by step answer:
Now Direction cosines of the line are basically the cosine angles of the line made with coordinate axes. Hence if α, β and γ are the angles of the line made by coordinate axis x, y, z respectively then the direction cosines of the line is cosα,cosβ,cosγ\cos \alpha ,\cos \beta ,\cos \gamma
To find direction cosines we first need to find direction ratios of the line.
Direction ratios of the line xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} is a, b, c. hence we will try to write the equation in this form.
Now Consider the equation of given line 5x3=15y+7=310z5x-3=15y+7=3-10z
We can also write this equation as
5(x35)=15(y+715)=10(z310)5\left( x-\dfrac{3}{5} \right)=15\left( y+\dfrac{7}{15} \right)=-10\left( z-\dfrac{3}{10} \right)
Now we will take LCM of 5, 15, 10 which is 30. Hence dividing the whole equation by 30 we get
(x35)6=(y+715)2=(z310)3\dfrac{\left( x-\dfrac{3}{5} \right)}{6}=\dfrac{\left( y+\dfrac{7}{15} \right)}{2}=\dfrac{\left( z-\dfrac{3}{10} \right)}{-3}
Now the above equation is in the form of xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c}
Hence we get the direction ratios as 6, 2, -3.
Now if a, b, c. are direction ratios of line then direction cosines are given by aa2+b2+c2\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} , ba2+b2+c2\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} , ca2+b2+c2\dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}
Hence the direction cosine of the given lines become 662+22+(3)2\dfrac{6}{\sqrt{{{6}^{2}}+{{2}^{2}}+{{(-3)}^{2}}}}, 262+22+(3)2\dfrac{2}{\sqrt{{{6}^{2}}+{{2}^{2}}+{{(-3)}^{2}}}} , 362+22+(3)2\dfrac{-3}{\sqrt{{{6}^{2}}+{{2}^{2}}+{{(-3)}^{2}}}}
Hence solving this we get the direction cosines as
=636+4+9=\dfrac{6}{\sqrt{36+4+9}}, 236+4+9\dfrac{2}{\sqrt{36+4+9}} , 336+4+9\dfrac{-3}{\sqrt{36+4+9}}
=649=\dfrac{6}{\sqrt{49}} , 249\dfrac{2}{\sqrt{49}} , 349\dfrac{-3}{\sqrt{49}}
=67=\dfrac{6}{7} , 27\dfrac{2}{7} , 37\dfrac{-3}{7}

Hence the direction cosines of the lines are =67=\dfrac{6}{7} , 27\dfrac{2}{7} , 37\dfrac{-3}{7}

Note: Direction ratios of the line xx1a=yy1b=zz1c\dfrac{x-{{x}_{1}}}{a}=\dfrac{y-{{y}_{1}}}{b}=\dfrac{z-{{z}_{1}}}{c} is a, b, c which should not be confused with direction cosines which are aa2+b2+c2\dfrac{a}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}, ba2+b2+c2\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} , ca2+b2+c2\dfrac{c}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}.