Solveeit Logo

Question

Question: The equation of a directrix of the ellipse \(\frac{x^{2}}{16} + \frac{y^{2}}{25} = 1\)is...

The equation of a directrix of the ellipse x216+y225=1\frac{x^{2}}{16} + \frac{y^{2}}{25} = 1is

A

y=253y = \frac{25}{3}

B

x=3x = 3

C

x=3x = - 3

D

x=325x = \frac{3}{25}

Answer

y=253y = \frac{25}{3}

Explanation

Solution

From the given equation of ellipse a2=16,b2=25a^{2} = 16,b^{2} = 25 (since b>ab > a)

So, a2=b2(1e2)a^{2} = b^{2}(1 - e^{2}) , ∴ 16=25(1e2)16 = 25(1 - e^{2})

1e2=1625e2=925\Rightarrow 1 - e^{2} = \frac{16}{25} \Rightarrow e^{2} = \frac{9}{25}e=35e = \frac{3}{5}

∴ One directrix is y=be=53/5=253y = \frac{b}{e} = \frac{5}{3/5} = \frac{25}{3}