Solveeit Logo

Question

Mathematics Question on Parabola

The equation of a directrix of the ellipse x216+y225=1\frac{x^2}{16} + \frac{y^2}{25} = 1 is

A

3y = 5

B

y = 5

C

3y = 25

D

y = 3

Answer

3y = 25

Explanation

Solution

Equation of ellipse x2b2+y2a2=1\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1 , where a > b
Given, x216+y275=1b=4,a=5 \frac{x^{2}}{16} + \frac{y^{2}}{75} = 1 \Rightarrow b = 4 , a=5
But e=1b2a2=11625e=\sqrt{1 - \frac{b^{2}}{a^{2}}} = \sqrt{1 -\frac{16}{25}}
e=35\Rightarrow e = \frac{3}{5}
\therefore equation of directrix y=±aey = \pm \frac{a}{e}
y=±5353y=±25\therefore y = \pm \frac{5}{\frac{3}{5}} \Rightarrow 3y = \pm 25