Solveeit Logo

Question

Question: The equation of a curve passing through (0, 1) and having gradient \(\frac{–(y + y^{3})}{1 + x + xy^...

The equation of a curve passing through (0, 1) and having gradient (y+y3)1+x+xy2\frac{–(y + y^{3})}{1 + x + xy^{2}}at (x, y) is-

A

xy + tan–1 y = π2\frac{\pi}{2}

B

xy + tan–1 y = π4\frac{\pi}{4}

C

xy – tan–1 y = π2\frac{\pi}{2}

D

xy – tan–1y = π4\frac{\pi}{4}

Answer

xy + tan–1 y = π4\frac{\pi}{4}

Explanation

Solution

We have, dydx\frac{dy}{dx} = (y+y3)1+x(1+y2)\frac{–(y + y^{3})}{1 + x(1 + y^{2})}

or dxdy\frac{dx}{dy} = – 1+x(1+y2)y+y3\frac{1 + x(1 + y^{2})}{y + y^{3}}

= – [1y(y2+1)+x(1+y2)y(1+y2)]\left\lbrack \frac{1}{y(y^{2} + 1)} + \frac{x(1 + y^{2})}{y(1 + y^{2})} \right\rbrack

Ž dxdy\frac{dx}{dy} + xy\frac{x}{y} = 1y(1+y2)\frac{- 1}{y(1 + y^{2})}.

I. F. = edyye^{\int_{}^{}\frac{dy}{y}} = elog y = y.

Hence the solution is,

x . y = – 1y(1+y2)\int_{}^{}\frac{1}{y(1 + y^{2})} . y dy + C

= – dy1+y2\int_{}^{}\frac{dy}{1 + y^{2}} + C = – tan–1 y + C

or xy + tan–1 y = C.

This passes through (0, 1), therefore, tan–1 1 = C i.e. C = π4\frac{\pi}{4}.

Thus, the equation of the curve is

xy + tan–1 y = π4\frac{\pi}{4}