Solveeit Logo

Question

Question: The equation of a circle which touches both axes and the line \(3 x - 4 y + 8 = 0\) and whose centre...

The equation of a circle which touches both axes and the line 3x4y+8=03 x - 4 y + 8 = 0 and whose centre lies in the third quadrant is.

A

x2+y24x+4y4=0x ^ { 2 } + y ^ { 2 } - 4 x + 4 y - 4 = 0

B

x2+y24x+4y+4=0x ^ { 2 } + y ^ { 2 } - 4 x + 4 y + 4 = 0

C

x2+y2+4x+4y+4=0x ^ { 2 } + y ^ { 2 } + 4 x + 4 y + 4 = 0

D

x2+y24x4y4=0x ^ { 2 } + y ^ { 2 } - 4 x - 4 y - 4 = 0

Answer

x2+y2+4x+4y+4=0x ^ { 2 } + y ^ { 2 } + 4 x + 4 y + 4 = 0

Explanation

Solution

The equation of circle in third quadrant touching the coordinate axes with centre (a,a)( - a , - a ) and radius ‘a’ is x2+y2+2ax+2ay+a2=0x ^ { 2 } + y ^ { 2 } + 2 a x + 2 a y + a ^ { 2 } = 0 and we know

3(a)4(a)+89+16=aa=2\left| \frac { 3 ( - a ) - 4 ( - a ) + 8 } { \sqrt { 9 + 16 } } \right| = a \Rightarrow a = 2

Hence the required equation is

x2+y2+4x+4y+4=0x ^ { 2 } + y ^ { 2 } + 4 x + 4 y + 4 = 0.

Trick : Obviously the centre of the circle lies in III quadrant, which is given by (3).