Solveeit Logo

Question

Question: The equation of a circle touching the axes of coordinates and the line \(x \cos \alpha + y \sin \alp...

The equation of a circle touching the axes of coordinates and the line xcosα+ysinα=2x \cos \alpha + y \sin \alpha = 2can be.

A

x2+y22gx2gy+g2=0x ^ { 2 } + y ^ { 2 } - 2 g x - 2 g y + g ^ { 2 } = 0 ,

where g=2(cosα+sinα+1)g = \frac { 2 } { ( \cos \alpha + \sin \alpha + 1 ) }

B

x2+y22gx2gy+g2=0x ^ { 2 } + y ^ { 2 } - 2 g x - 2 g y + g ^ { 2 } = 0 ,

Where g=2(cosα+sinα1)g = \frac { 2 } { ( \cos \alpha + \sin \alpha - 1 ) }

C

x2+y22gx+2gy+g2=0x ^ { 2 } + y ^ { 2 } - 2 g x + 2 g y + g ^ { 2 } = 0,

Where g=2(cosαsinα+1)g = \frac { 2 } { ( \cos \alpha - \sin \alpha + 1 ) }

D

x2+y22gx+2gy+g2=0x ^ { 2 } + y ^ { 2 } - 2 g x + 2 g y + g ^ { 2 } = 0

Where g=2(cosαsinα1)g = \frac { 2 } { ( \cos \alpha - \sin \alpha - 1 ) }

(5) All of these

Explanation

Solution

(5)

Sol. x2+y22gx2gy+g2=0x ^ { 2 } + y ^ { 2 } - 2 g x - 2 g y + g ^ { 2 } = 0

g=±gcosα+gsinα2sin2α+cos2αg = \pm \frac { g \cos \alpha + g \sin \alpha - 2 } { \sqrt { \sin ^ { 2 } \alpha + \cos ^ { 2 } \alpha } }g=2sinα+cosα±1g = \frac { 2 } { \sin \alpha + \cos \alpha \pm 1 }.

Similarly other options hold.