Solveeit Logo

Question

Question: The equation of \(2\cot 2x-3\cot 3x=\tan 2x\) has A. Two solutions in \(\left( 0,\dfrac{\pi }{3} \...

The equation of 2cot2x3cot3x=tan2x2\cot 2x-3\cot 3x=\tan 2x has
A. Two solutions in (0,π3)\left( 0,\dfrac{\pi }{3} \right).
B. One solution in (0,π3)\left( 0,\dfrac{\pi }{3} \right).
C. No solution in (,)\left( -\infty ,\infty \right).
D. None of these

Explanation

Solution

In this problem we have found the solution for the given equation that is 2cot2x3cot3x=tan2x2\cot 2x-3\cot 3x=\tan 2x. In this problem we observe the given equation has trigonometric ratios. In the question we have an expression in cot\cot . So we will change cot\cot into tan\tan by using the well-known trigonometric formula cotx=1tanx\cot x=\dfrac{1}{\tan x}. Now we will simplify the equation by taking LCM. Then we will get a quadratic equation. To solve the quadratic equation, we will use the quadratic equation formula and simplify it to get the solution for the given equation.

Formula used:
1.cotx=1tanx\cot x=\dfrac{1}{\tan x}.
2.tan2x=2tanx(1tan2x)\tan 2x=\dfrac{2\tan x}{\left( 1-{{\tan }^{2}}x \right)}.
3. tan3x=3tanxtan3x(13tan2x)\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)}.
4. Solution for the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 is x=b±b4ac2acx=\dfrac{-b\pm \sqrt{b-4ac}}{2ac}.

Complete Step by Step Solution:
Given that, 2cot2x3cot3x=tan2x2\cot 2x-3\cot 3x=\tan 2x.
Now we will change the cotx\cot x into tanx\tan xby using the formula cotx=1tanx\cot x=\dfrac{1}{\tan x}, then we will write
2tan2x3tan3x=tan2x\Rightarrow \dfrac{2}{\tan 2x}-\dfrac{3}{\tan 3x}=\tan 2x.
We know that trigonometric identity that is tan2x=2tan2x1tan2x\tan 2x=\dfrac{2{{\tan }^{2}}x}{1-{{\tan }^{2}}x}. Substituting this formula in the above equation, then we will get
2(1tan2x)2tanx3tan3x=tan2x\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3}{\tan 3x}=\tan 2x.
We have another trigonometric identity that is tan3x=3tanxtan3x(13tan2x)\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)} . Again, substituting this formula in the above equation, then we will get
2(1tan2x)2tanx3(13tan2x)3tanxtan3x=tan2x\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3\left( 1-3{{\tan }^{2}}x \right)}{3\tan x-{{\tan }^{3}}x}=\tan 2x.
Simplifying the above equation, then we will get
2(1tan2x)(3tan2x+tan4x3+9tan2x)tanx(3tan2x)=2tanx1tan2x tanx+5tan2xtanx(3tan2x)=2tanx1tan2x (tan2x+5)(1tan2x)=2(3tan2x) tan4x+4tan2x+1=0 \begin{aligned} & \Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)\left( 3-\tan 2x+{{\tan }^{4}}x-3+9{{\tan }^{2}}x \right)}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\\ & \Rightarrow \dfrac{{{\tan }^{{}}}x+5{{\tan }^{2}}x}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\\ & \Rightarrow \left( {{\tan }^{2}}x+5 \right)\left( 1-{{\tan }^{2}}x \right)=2\left( 3-{{\tan }^{2}}x \right) \\\ & \Rightarrow {{\tan }^{4}}x+4{{\tan }^{2}}x+1=0 \\\ \end{aligned}
We can observe that the above equation is quadratic equation in terms of tan2x{{\tan }^{2}}x, so the solution of the above equation can be written as
tan2x=2±442 tan2x=1 \begin{aligned} & {{\tan }^{2}}x=\dfrac{-2\pm \sqrt{4-4}}{2} \\\ & \Rightarrow {{\tan }^{2}}x=-1 \\\ \end{aligned}
we will get the negative solution. Then there is no solution.

Note:
We can also convert the whole given equation in terms of sinx\sin x, cosx\cos x by using the well-known formulas tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}, cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. After substituting these formulas, we will simplify the equation and use trigonometric identities to solve the equation.