Solveeit Logo

Question

Question: The equation \[\left| {z + i} \right| - \left| {z - i} \right| = k\] represents a hyperbola if A....

The equation z+izi=k\left| {z + i} \right| - \left| {z - i} \right| = k represents a hyperbola if
A.k(2,2)k \in \left( { - 2,2} \right)
B.k(2,0)k \in \left( { - 2,0} \right)
C.k \in \left\\{ {0,2} \right\\}
D.k \in \left\\{ { - 2,2} \right\\}

Explanation

Solution

Here we need to find the range of the variable such that the equation will represent the equation of hyperbola. We will first assume the standard complex number and then we will substitute this value in the equation of the hyperbola. We will use the property of the hyperbola to find the range of the required variable.

Complete step-by-step answer:
The given equation is
z+izi=k\left| {z + i} \right| - \left| {z - i} \right| = k ……………. (1)\left( 1 \right)
Here we need to find the range of kk such that this equation will represent the equation of hyperbola.
Let the complex number zz be x+iyx + iy .
Now, we will substitute this value in equation 1.
x+iy+ix+iyi=k\Rightarrow \left| {x + iy + i} \right| - \left| {x + iy - i} \right| = k
On simplifying the terms, we get
x+i(y+1)x+i(y1)=k\Rightarrow \left| {x + i\left( {y + 1} \right)} \right| - \left| {x + i\left( {y - 1} \right)} \right| = k
We know that a+ib=a2+b2\left| {a + ib} \right| = \sqrt {{a^2} + {b^2}}
Using this property of complex number, we get
x2+(y+1)2x2+(y1)2=k\Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} - \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} = k
On further simplification, we get
x2+(y+1)2=kx2+(y1)2\Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = k - \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}
On squaring both sides, we get
(x2+(y+1)2)2=(kx2+(y1)2)2\Rightarrow {\left( {\sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} } \right)^2} = {\left( {k - \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} } \right)^2}
We know from the algebraic identities that (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
Using this identity here, we get
x2+(y+1)2+2×x×(y+1)=k2+(x2+(y1)2)22×k×x2+(y1)2\Rightarrow {x^2} + {\left( {y + 1} \right)^2} + 2 \times x \times \left( {y + 1} \right) = {k^2} + {\left( {\sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} } \right)^2} - 2 \times k \times \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}
On further simplification, we get
x2+(y+1)2=k2+x2+(y1)22×k×x2+(y1)2\Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {k^2} + {x^2} + {\left( {y - 1} \right)^2} - 2 \times k \times \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}
Now, again we will use the algebraic identities:-
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
(a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
x2+y2+2y+1=k2+x2+y22y+12×k×x2+y22y+1\Rightarrow {x^2} + {y^2} + 2y + 1 = {k^2} + {x^2} + {y^2} - 2y + 1 - 2 \times k \times \sqrt {{x^2} + {y^2} - 2y + 1}
We will add and subtract the like terms on both sides
2×k×x2+y22y+1=k24y\Rightarrow 2 \times k \times \sqrt {{x^2} + {y^2} - 2y + 1} = {k^2} - 4y
On squaring both sides, we get
(2×k×x2+y22y+1)2=(k24y)2 4k2(x2+y22y+1)=(k24y)2\begin{array}{l} \Rightarrow {\left( {2 \times k \times \sqrt {{x^2} + {y^2} - 2y + 1} } \right)^2} = {\left( {{k^2} - 4y} \right)^2}\\\ \Rightarrow 4{k^2}\left( {{x^2} + {y^2} - 2y + 1} \right) = {\left( {{k^2} - 4y} \right)^2}\end{array}
Now, we will use the the algebraic identity :-
(ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
Using this identity, we get
4k2(x2+y22y+1)=k4+16y28yk2\Rightarrow 4{k^2}\left( {{x^2} + {y^2} - 2y + 1} \right) = {k^4} + 16{y^2} - 8y{k^2}
On multiplying the terms, we get
4k2x2+4k2y28k2y+4k2=k4+16y28yk2\Rightarrow 4{k^2}{x^2} + 4{k^2}{y^2} - 8{k^2}y + 4{k^2} = {k^4} + 16{y^2} - 8y{k^2}
Now, we will add and subtract the like terms, we get
4k2x2+(4k216)y2k4+4k2=0\Rightarrow 4{k^2}{x^2} + \left( {4{k^2} - 16} \right){y^2} - {k^4} + 4{k^2} = 0…………… (2)\left( 2 \right)
We know the general equation is given by
ax2+by2+2hxy+2gx+2fy+c=0\Rightarrow a{x^2} + b{y^2} + 2hxy + 2gx + 2fy + c = 0 …………. (3)\left( 3 \right)
We know that this general equation will represent the equation of hyperbola when h2ab>0{h^2} - ab > 0
Now, we will compare equation 2 and equation 3 i.e. we will compare the obtained equation with the general equation.
a=4k2\b=4k216\h=0\g=0=¸k4+4k2\begin{array}{l}a = 4{k^2}\\\b = 4{k^2} - 16\\\h = 0\\\g = 0\\\c = - {k^4} + 4{k^2}\end{array}
The obtained equation will represent the equation of hyperbola when h2ab>0{h^2} - ab > 0
Substituting h=0,a=4k2h = 0,a = 4{k^2} and b=4k216b = 4{k^2} - 16 in the above equation, we get
02(4k2)(4k216)>0{0^2} - \left( {4{k^2}} \right)\left( {4{k^2} - 16} \right) > 0
On further simplification, we get
4k2(4k216)>0\Rightarrow - 4{k^2}\left( {4{k^2} - 16} \right) > 0
Multiplying 1 - 1 to both sides of inequality
4k2(4k216)<0\Rightarrow 4{k^2}\left( {4{k^2} - 16} \right) < 0
We can write this inequality as
16k2(k2)(k+2)<0\Rightarrow 16{k^2}\left( {k - 2} \right)\left( {k + 2} \right) < 0
Now, we will number lines to solve this inequality.

We can see from the number line that k(2,2)k \in \left( { - 2,2} \right) is satisfying the inequality.
Hence, the k(2,2)k \in \left( { - 2,2} \right) is the required answer.
Therefore, the correct option is option A.

Note: To solve this question, we need to know the basic properties of the hyperbola and how a general equation is used for different equations. Here we have also solved the inequality to get the required value. When we divide or multiply a negative number on both sides of the inequality, the sign of inequality gets changed but when we add or subtract the number on both sides of the inequality, the sign of inequality remains unchanged.