Question
Question: The equation \[\left| {\begin{array}{*{20}{c}} 1&x;&{{x^2}} \\\ {{x^2}}&1&x; \\\ x&{{x...
The equation \left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
{{x^2}}&1&x; \\\
x&{{x^2}}&1
\end{array}} \right| = 0 has
A.Exactly two distinct roots
B.One pair of equal real roots
C.Modulus of each root 1
D.Three pairs of equal roots
Solution
Here, we will apply the column transformation C1→C1+C2+C3 in the left hand side of given determinant and then after taking factor 1+x+x2 common out. Then we will apply row transformations, R1→R1−R2 and R2→R2−R3 in the obtained determinant and find the determinant to obtain the required equation.
Complete step-by-step answer:
We are given that the determinant is \left| {\begin{array}{*{20}{c}}
1&x;&{{x^2}} \\\
{{x^2}}&1&x; \\\
x&{{x^2}}&1
\end{array}} \right| = 0.
Applying column transformation C1→C1+C2+C3 in the left hand side of above determinant, we get
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{{20}{c}}
0&{x - 1}&{{x^2} - x} \\
0&{1 - {x^2}}&{x - 1} \\
1&{{x^2}}&1
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{{20}{c}}
{x - 1}&{{x^2} - x} \\
{1 - {x^2}}&{x - 1}
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {\left( {x - 1} \right)\left( {x - 1} \right) - \left( {1 - {x^2}} \right)\left( {{x^2} - x} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {{{\left( {x - 1} \right)}^2} - x\left( {1 - {x^2}} \right)\left( {x - 1} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {\left( {x - 1} \right) - x\left( {1 - {x^2}} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {x - 1 - x + {x^3}} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {\left( {{x^3} - 1} \right)^2} = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {x^3} - 1 + 1 = 0 + 1 \\
\Rightarrow {x^3} = 1 \\
\Rightarrow x = \sqrt[3]{1} \\
\Rightarrow x = 1 \\