Solveeit Logo

Question

Question: The equation \(\frac{x^{2}}{12 - k} + \frac{y^{2}}{8 - k} = 1\) represents...

The equation x212k+y28k=1\frac{x^{2}}{12 - k} + \frac{y^{2}}{8 - k} = 1 represents

A

A hyperbola, if k < 8

B

An ellipse, if k > 8

C

A hyperbola, if 8 < k < 12

D

None of these

Answer

A hyperbola, if k < 8

Explanation

Solution

x212k+y28k=1\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}\mathbf{-}\mathbf{k}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{8}\mathbf{-}\mathbf{k}}\mathbf{= 1}represents hyperbola, then 12 - k and 8 - k should be of opposite sign therefore 8 < k < 12 and will represent ellipse if both 12 - k and 8 - k are positive i.e. k < 8.