Solveeit Logo

Question

Question: The equation \((a + b)^{2} = 4ab\sin^{2}\theta\)is possible only when....

The equation (a+b)2=4absin2θ(a + b)^{2} = 4ab\sin^{2}\thetais possible only when.

A

2a=b2a = b

B

a=ba = b

C

a=2ba = 2b

D

None of these

Answer

a=ba = b

Explanation

Solution

We have (a+b)2=4absin2θ(a + b)^{2} = 4ab\sin^{2}\theta

sin2θ=(a+b)24ab1(a+b)24ab0\Rightarrow \sin^{2}\theta = \frac{(a + b)^{2}}{4ab} \leq 1 \Rightarrow (a + b)^{2} - 4ab \leq 0

(ab)20a=b.\Rightarrow (a - b)^{2} \leq 0 \Rightarrow a = b.