Solveeit Logo

Question

Question: The equation \(3\sin^{2}x + 10\cos x - 6 = 0\) is satisfied if...

The equation 3sin2x+10cosx6=03\sin^{2}x + 10\cos x - 6 = 0 is satisfied if

A

x=nπ±cos1(13)x = n\pi \pm \cos^{- 1}\left( \frac{1}{3} \right)

B

x=2nπ±cos1(13)x = 2n\pi \pm \cos^{- 1}\left( \frac{1}{3} \right)

C

x=nπ±cos1(16)x = n\pi \pm \cos^{- 1}\left( \frac{1}{6} \right)

D

x=2nπ±cos1(16)x = 2n\pi \pm \cos^{- 1}\left( \frac{1}{6} \right)

Answer

x=2nπ±cos1(13)x = 2n\pi \pm \cos^{- 1}\left( \frac{1}{3} \right)

Explanation

Solution

3sin2x+10cosx6=03\sin^{2}x + 10\cos x - 6 = 03(1cos2x)+10cosx6=03(1 - \cos^{2}x) + 10\cos x - 6 = 0

on solving, (cosx3)(3cosx1)=0(\cos x - 3)(3\cos x - 1) = 0. Either cosx=3\cos x = 3

(which is not possible) or cosx=13\cos x = \frac{1}{3} \mathbf{\Rightarrow} x=2nπ±cos1(13)\mathbf{x = 2n\pi}\mathbf{\pm}\mathbf{\cos}^{\mathbf{-}\mathbf{1}}\left( \frac{\mathbf{1}}{\mathbf{3}} \right).