Solveeit Logo

Question

Question: The equation \(2^{\frac{2\pi}{\cos^{- 1}x}} - \left( a + \frac{1}{2} \right)2^{\frac{\pi}{\cos^{- 1}...

The equation 22πcos1x(a+12)2πcos1x2^{\frac{2\pi}{\cos^{- 1}x}} - \left( a + \frac{1}{2} \right)2^{\frac{\pi}{\cos^{- 1}x}}– a2 = 0 has only one real root, then-

A

1 ≤ a ≤ 3

B

a ≤ –3 or a ≥ 1

C

1 < a < 3

D

None

Answer

a ≤ –3 or a ≥ 1

Explanation

Solution

1 ≤ πcos1x\frac{\pi}{\cos^{- 1}x} < ∞ ⇒ 2 ≤ 2πcos1x2^{\frac{\pi}{\cos^{- 1}x}} < ∞

Let t = 2πcos1x2^{\frac{\pi}{\cos^{- 1}x}}

So t2(a+12)\left( a + \frac{1}{2} \right)t – a2 = 0

∴ f (2) < 0

4 – (2a + 1) – a2 ≤ 0

a2 + 2a – 3 ≥ 0

a ≤ –3, a ≥ 1