Solveeit Logo

Question

Question: The equation \(2\cos^{- 1}x = \sin^{- 1}\left( 2x\sqrt{1 - x^{2}} \right)\) is valid for all values ...

The equation 2cos1x=sin1(2x1x2)2\cos^{- 1}x = \sin^{- 1}\left( 2x\sqrt{1 - x^{2}} \right) is valid for all values of xx satisfying

A

1x1- 1 \leq x \leq 1

B

0x10 \leq x \leq 1

C

0x120 \leq x \leq \frac{1}{\sqrt{2}}

D

12x1\frac{1}{\sqrt{2}} \leq x \leq 1

Answer

12x1\frac{1}{\sqrt{2}} \leq x \leq 1

Explanation

Solution

If we denote cos1x\cos^{- 1}x by y, then

Since 0cos1xπ0 \leq \cos^{- 1}x \leq \pi02y2π0 \leq 2y \leq 2\pi ………(1)

Also since π2sin1(2x1x2)π2- \frac{\pi}{2} \leq \sin^{- 1}\left( 2x\sqrt{1 - x^{2}} \right) \leq \frac{\pi}{2}

π2sin1sin(2y)π2- \frac{\pi}{2} \leq \sin^{- 1}{\sin(2y)} \leq \frac{\pi}{2}

π22yπ2- \frac{\pi}{2} \leq 2y \leq \frac{\pi}{2} ………..(2)

From (1) and (2) we find 02yπ20 \leq 2y \leq \frac{\pi}{2}

0yπ40 \leq y \leq \frac{\pi}{4}

0cos1xπ40 \leq \cos^{- 1}x \leq \frac{\pi}{4}

which holds if 12x1\frac{1}{\sqrt{2}} \leq x \leq 1