Solveeit Logo

Question

Question: The equation \[2{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1\] has A. product...

The equation 2log2(log2x)+log1/2log2(22x)=12{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1 has
A. product of all its solution =4
B. a rational solution which is not an integer
C. has a natural solution
D. has no prime solutions

Explanation

Solution

Here, we would be using the basic properties of logarithmic function. Then find the value of x from the quadratic equation.

Complete step-by-step answer:
Given, 2log2(log2x)+log1/2log2(22x)=12{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1
(using the property which is given by alogb=logbaa\log b = \log {b^a}and logab=logbloga\log _a^b = \dfrac{{\log b}}{{\log a}})
log2(log2x)2+log(log2(22x))log1/2=1\Rightarrow {\log _2}{({\log _2}x)^2} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1
log(log2x)2log2+log(log2(22x))log1/2=1\Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1
log(log2x)2log2log(log2(22x))log2=1\Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} - \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1(using the property which is given by logab=logba\log \dfrac{a}{b} = - \log \dfrac{b}{a})
log(log2x)2log(log2(22x))log2=1\Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2} - \log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1
log((log2x)2log2(22x))=log2\Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}(2\sqrt {2x} )}}} \right) = \log 2 (using the property which is given by logalogb=logab\log a - \log b = \log \dfrac{a}{b})
log((log2x)2log2(23/2x))=log2\Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}x)}}} \right) = \log 2
log((log2x)2log2(23/2)+log2x)=log2\Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}) + {{\log }_2}x}}} \right) = \log 2 (using the property which is given by loga+logb=logab\log a + \log b = \log ab)
log(log2x)2=log2(32+log2x)\Rightarrow \log {({\log _2}x)^2} = \log 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right)(using the property which is given bylogaan=n{\log _a}{a^n} = n)

(log2x)2=2(32+log2x) (log2x)2=3+2log2x (log2x)22log2x3=0 (log2x)23log2x+log2x3=0 log2x(log2x3)+1(log2x3)=0 (log2x+1)(log2x3)=0 x=12,x=23=8  \Rightarrow {({\log _2}x)^2} = 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right) \\\ \Rightarrow {({\log _2}x)^2} = 3 + 2{\log _2}x \\\ \Rightarrow {({\log _2}x)^2} - 2{\log _2}x - 3 = 0 \\\ \Rightarrow {({\log _2}x)^2} - 3{\log _2}x + {\log _2}x - 3 = 0 \\\ \Rightarrow {\log _2}x({\log _2}x - 3) + 1({\log _2}x - 3) = 0 \\\ \Rightarrow ({\log _2}x + 1)({\log _2}x - 3) = 0 \\\ \Rightarrow x = \dfrac{1}{2},x = {2^3} = 8 \\\

Now if we take the product of x=12x = \dfrac{1}{2}and x=8x = 8then we get 4
Therefore, option A. product of all its solution =4 is the required solution
Note: (i) The properties of logarithmic function should be used carefully.
(ii) One should avoid common mistakes such as rlogaM(logaM)rr{\log _a}M \ne {({\log _a}M)^r}