Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The equation 2cos1x+sin1x=11π62\, cos^{-1} x+ sin^{-1} x = \frac{11\pi}{6} has

A

no solution

B

only one solution

C

two solutions

D

three solutions

Answer

no solution

Explanation

Solution

Given equation is 2cos1x+sin1x=11π62\, cos^{-1} x+ sin^{-1} x = \frac{11\pi}{6} cos1x+(cos1x+sin1x)=11π6\Rightarrow cos^{-1}\,x+\left(cos^{-1}\,x + sin^{-1}x\right) = \frac{11\pi}{6} cos1x+π2=11π6\Rightarrow cos^{-1} x + \frac{\pi }{2} = \frac{11\pi }{6} cos1x=4π3\Rightarrow cos^{-1}\, x = \frac{4\pi }{3} which is not possible as cos1x[0,π]cos^{-1}x \in\left[0,\,\pi\right].